Influencia de la representación del poder espectral de la variabilidad cardiaca al evaluar el estrés
PDF

Palabras clave

Stress
Psychophysiological assessment
Power spectral density
Principal component analysis
Autonomic space Estrés
Evaluación psicofisiología
Densidad de poder espectral
Análisis de componentes principales
Espacio autonómico

Resumen

El análisis espectral de la variabilidad de la frecuencia cardiaca (VFC) permite estudiar la interacción entre los mecanismos psicológicos y neurofisiológicos del estrés. Con este análisis, se obtienen las bandas de frecuencia baja (LF) y alta (HF), cuyos valores se representan con diferentes unidades. No obstante, hay inconsistencias en algunas de estas unidades en la evaluación del estrés. El objetivo de este estudio fue analizar la similitud de cinco unidades de la VFC en una evaluación psicofisiológica de dicho fenómeno. Participaron dos grupos de estudiantes universitarios de primer ingreso. La evaluación psicofisiológica se hizo bajo tres condiciones: línea base, estrés y recuperación. Se compararon las condiciones de línea base y estrés. Además, se realizaron correlaciones de Spearman y un análisis de componentes principales entre todas las unidades de la VFC. En la condición de estrés se observaron reducciones significativas en todas las unidades de HF en ambos grupos. Solo un grupo mostró diferencias significativas en todas las unidades de LF. Con el análisis de componentes principales y de correlación se corroboró la dependencia entre LF y HF en unidades normalizadas y relativas. El uso de estas dos unidades debería de considerarse con precaución en la evaluación del estrés.

https://doi.org/10.25009/pys.v33i2.2822
PDF

Citas

Allen, J.J.B., Chambers, A.S. y Towers, D.N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74(2), 243-62. Doi: 10.1016/j.biopsycho.2006.08.005.

Bali, A. y Jaggi, A.S. (2015). Clinical experimental stress studies: Methods and assessment. Reviews in the Neurosciences, 26(5), 555-79. Doi: 10.1515/revneuro-2015-0004.

Berntson, G.G., Cacioppo, J.T., Binkley, P.F., Uchino, B.N., Quigley, K.S. y Fieldstone, A. (1994). Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31(6), 599-608. Doi: 10.1111/j.1469-8986.1994.tb02352.x.

Berntson, G.G., Cacioppo, J.T. y Quigley, K.S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98(4), 459-87. Doi: 10.1037/0033-295x.98.4.459.

Billman, G.E. (2011). Heart rate variability: a historical perspective. Frontiers in Physiology, 2, 1-13. Doi: 10.3389/fphys.2011.00086.

Brindle, R.C., Ginty, A.T., Phillips, A.C. y Carroll, D. (2014). A tale of two mechanisms: A meta-analytic approach toward understanding the autonomic basic of cardiovascular reactivity to acute psychological stress. Psychophysiology, 51(10), 964-976. Doi: 10.1111/psyp.12248.

Burr, R.L. (2007). Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep, 30(7), 913-919. Doi: 10.1093/sleep/30.7.913.

Cohen, H., Benjamin, J., Geva, A.B., Matar, M.A., Kaplan, Z. y Kotler, M. (2000). Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Research, 96(1), 1-13. Doi: 10.1016/s0165-1781(00)00195-5.

Cohen, S., Janicki-Deverts, D. y Miller, G.E. (2007). Psychological stress and disease. Journal of the American Medical Association, 298(14), 1685–1687. Doi: 10.1001/jama.298.14.1685.

De Geus, E.J.C., Gianaros, P.J., Brindle, R.C., Jennings, J.R. y Berntson, G.G. (2019). Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretative considerations. Psychophysiology, 56(2), e13287. Doi: 10.1111/psyp.13287.

Delaney, J.P.A. y Brodie, D.A. (2000). Effects of short-term psychological stress on the time and frequency domains of heart rate variability. Perceptual and Motor Skills, 91(2), 515-524.

Eckberg, D.L. (1997). Sympathovagal balance. A critical appraisal. Circulation, 96(9), 3224-3232. Doi: 10.1161/01.CIR.96.9.3224.

Endukuru, C.K. y Tripathi, S. (2016). Evaluation of cardiac responses to stress in healthy individuals: a non invasive evaluation by heart rate variability and stroop test. International Journal of Scientific Research, 5(7), 286-289. Doi: 10.2466/pms.2000.91.2.515.

Esler, M. (2017). Mental stress and human cardiovascular disease. Neuroscience & Biobehavioral Reviews, 74, 269-276. Doi: 10.1016/j.neubiorev.2016.10.011.

Faulstich, M.E., Williamson, D.A., McKenzie, S.J., Duchmann, E.G., Hutchinson, K.M. y Blouin, D.C. (1986). Temporal stability of psychophysiological responding: a comparative analysis of mental and physical stressors. International Journal of Neuroscience, 30(1-2), 65-72. Doi: 10.3109/00207458608985656.

Filaire, E., Portier, H., Massart, A., Ramat, L. y Teixeira, A. (2010). Effect of lecturing to 200 students on heart rate variability and Alpha-amylase activity. European Journal of Applied Physiology, 108(5), 1035-1043. Doi: 10.1007/s00421-009-1310-4.

Goedhart, A.D., Willemsen, G., Houtveen, J.H., Boomsma, D.I. y De Geus, E.J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45(6), 1086-1090. Doi: 10.1111/j.1469-8986.2008.00710.x.

Hayano, J. y Yuda, E. (2019). Pitfalls of assessment of autonomic function by heart rate variability. Journal of Physiological Anthropology, 38(1), 3. Doi: 10.1186/s40101-019-0193-2.

Hibbert, A.S, Weinberg, A. y Klonsky, E.D. (2012). Field validity of heart rate variability metrics produced by QRSTool and CMetX. Psychological Assessment, 24(3), 777-782. Doi: 10.1037/a0027284.

Kim, H.G., Cheon, E.J., Bai, D.S., Lee, Y.H. y Koo, B.H. (2018). Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation, 15(3), 235-245. Doi: 10.30773/pi.2017.08.17.

Laborde, S., Mosley, L.S. y Thayer, J.F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research. Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. Doi: 10.3389/fpsyg.2017.00213.

Lagraauw, H.M., Kuiper, J. y Bot, I. (2015). Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain, Behavior, and Immunity, 50, 18-30. Doi: 10.1016/j.bbi.2015.08.007.

Malliani, A., Pagani, M., Lombardi, F. y Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84(2), 482-492. Doi: 10.1161/01.cir.84.2.482.

Montano, N., Porta, A., Cogliati, C., Constantino, G., Tobaldini, E., Casali, K.R. e Iellamo, F. (2009). Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience and Biobehavioral Reviews, 33(2), 71-80. Doi: 10.1016/j.neubiorev.2008.07.006 .

Morera, L.P., Tempesti, T.C., Pérez, E. y Medrano, L.A. (2019). Biomarcadores en la medición del estrés: una revisión sistemática. Ansiedad y Estrés, 25(1), 49-58. Doi: 10.1016/j.anyes.2019.02.001.

Open Science Collaboration (2015). Psychology. Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. Doi: 10.1126/science.aac4716.

Pallant, J. (2016). SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Open University Press/McGraw-Hill.

Pulopulos, M.M., Hidalgo, V., Puig P., S. y Salvador, A. (2018). Psychophysiological response to social stressors: relevance of sex and age. Psicothema, 30(2), 171-176. Doi: 10.7334/psicothema2017.200.

Reyes del Paso, G.A., Langewitz, W., Mulder, L.J.M., Van Roon, A. y Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on ranalysis of previous studies. Psychophysiology, 50(5), 477-487. Doi: 10.1111/psyp.12027.

Sloan, R.P., Korten, J.B. y Myers, M.M. (1991). Components of heart rate reactivity during mental arithmetic with and without speaking. Physiology & Behavior, 50(5), 1039-1045. Doi: 10.1016/0031-9384(91)90434-p.

Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-aho, P.O. y Karjalainen, P.A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210-20. Doi: 10.1016/j.cmpb.2013.07.024.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043-65.

Thoits, P.A. (2010). Stress and health: major findings and policy implications. Journal of Health and Social Behavior, 51(1), S41-S53. Doi: 10.1177/0022146510383499.

Thomas, B.L., Claassen, N., Becker, P., y Viljoen, M. (2019). Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology, 78(1), 14-26. Doi: 10.1159/000495519.

Uchino, B.N., Smith, T.W., Holt-Lunstad, J., Campo, R. y Reblin, M. (2007). Stress and illness. En J. Cacioppo, L. G. Tassinary y G. G. Berntson (Eds.): Handbook of psychophysiology (pp. 608-632). Cambridge University Press.

Vazan, R., Filcikova, D. y Mravec, B. (2017). Effect of the Stroop test performed in supine position on the heart rate variability in both genders. Autonomic Neuroscience, 208, 156-160. Doi: 10.1016/j.autneu.2017.10.009.