Influence of power spectral representation of heart rate variability in assessing stress
PDF (Español)

Keywords

Stress
Psychophysiological assessment
Power spectral density
Principal component analysis
Autonomic space Estrés
Evaluación psicofisiología
Densidad de poder espectral
Análisis de componentes principales
Espacio autonómico

Abstract

Spectral analysis of heart rate variability (HRV) allows us to study the interaction between psychological and neurophysiological stress mechanisms. With this analysis, low-frequency (LF) and high-frequency (HF) bands are obtained, whose values can be represented with different units. However, there are inconsistencies in some of these units in the stress assessment. Objective. This study aimed to analyze the similarity of 5 units of HRV in a psychophysiological stress assessment. Method. Two groups of first-time undergraduate students participated. The psychophysiological assessment had three conditions; baseline, stress, and recovery. Comparisons also included baseline and stress conditions. Spearman correlations and principal component analysis were performed among all HRV units. Results. There were significant reductions in all HF units in both groups in the stress condition. Only one group showed significant differences in all LF units. Principal component and correlation analyses corroborated the dependence between LF and HF represented in normalized and relative units. Using these two units should be considered with caution in stress assessment.

https://doi.org/10.25009/pys.v33i2.2822
PDF (Español)

References

Allen, J.J.B., Chambers, A.S. y Towers, D.N. (2007). The many metrics of cardiac chronotropy: A pragmatic primer and a brief comparison of metrics. Biological Psychology, 74(2), 243-62. Doi: 10.1016/j.biopsycho.2006.08.005.

Bali, A. y Jaggi, A.S. (2015). Clinical experimental stress studies: Methods and assessment. Reviews in the Neurosciences, 26(5), 555-79. Doi: 10.1515/revneuro-2015-0004.

Berntson, G.G., Cacioppo, J.T., Binkley, P.F., Uchino, B.N., Quigley, K.S. y Fieldstone, A. (1994). Autonomic cardiac control. III. Psychological stress and cardiac response in autonomic space as revealed by pharmacological blockades. Psychophysiology, 31(6), 599-608. Doi: 10.1111/j.1469-8986.1994.tb02352.x.

Berntson, G.G., Cacioppo, J.T. y Quigley, K.S. (1991). Autonomic determinism: the modes of autonomic control, the doctrine of autonomic space, and the laws of autonomic constraint. Psychological Review, 98(4), 459-87. Doi: 10.1037/0033-295x.98.4.459.

Billman, G.E. (2011). Heart rate variability: a historical perspective. Frontiers in Physiology, 2, 1-13. Doi: 10.3389/fphys.2011.00086.

Brindle, R.C., Ginty, A.T., Phillips, A.C. y Carroll, D. (2014). A tale of two mechanisms: A meta-analytic approach toward understanding the autonomic basic of cardiovascular reactivity to acute psychological stress. Psychophysiology, 51(10), 964-976. Doi: 10.1111/psyp.12248.

Burr, R.L. (2007). Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review. Sleep, 30(7), 913-919. Doi: 10.1093/sleep/30.7.913.

Cohen, H., Benjamin, J., Geva, A.B., Matar, M.A., Kaplan, Z. y Kotler, M. (2000). Autonomic dysregulation in panic disorder and in post-traumatic stress disorder: application of power spectrum analysis of heart rate variability at rest and in response to recollection of trauma or panic attacks. Psychiatry Research, 96(1), 1-13. Doi: 10.1016/s0165-1781(00)00195-5.

Cohen, S., Janicki-Deverts, D. y Miller, G.E. (2007). Psychological stress and disease. Journal of the American Medical Association, 298(14), 1685–1687. Doi: 10.1001/jama.298.14.1685.

De Geus, E.J.C., Gianaros, P.J., Brindle, R.C., Jennings, J.R. y Berntson, G.G. (2019). Should heart rate variability be “corrected” for heart rate? Biological, quantitative, and interpretative considerations. Psychophysiology, 56(2), e13287. Doi: 10.1111/psyp.13287.

Delaney, J.P.A. y Brodie, D.A. (2000). Effects of short-term psychological stress on the time and frequency domains of heart rate variability. Perceptual and Motor Skills, 91(2), 515-524.

Eckberg, D.L. (1997). Sympathovagal balance. A critical appraisal. Circulation, 96(9), 3224-3232. Doi: 10.1161/01.CIR.96.9.3224.

Endukuru, C.K. y Tripathi, S. (2016). Evaluation of cardiac responses to stress in healthy individuals: a non invasive evaluation by heart rate variability and stroop test. International Journal of Scientific Research, 5(7), 286-289. Doi: 10.2466/pms.2000.91.2.515.

Esler, M. (2017). Mental stress and human cardiovascular disease. Neuroscience & Biobehavioral Reviews, 74, 269-276. Doi: 10.1016/j.neubiorev.2016.10.011.

Faulstich, M.E., Williamson, D.A., McKenzie, S.J., Duchmann, E.G., Hutchinson, K.M. y Blouin, D.C. (1986). Temporal stability of psychophysiological responding: a comparative analysis of mental and physical stressors. International Journal of Neuroscience, 30(1-2), 65-72. Doi: 10.3109/00207458608985656.

Filaire, E., Portier, H., Massart, A., Ramat, L. y Teixeira, A. (2010). Effect of lecturing to 200 students on heart rate variability and Alpha-amylase activity. European Journal of Applied Physiology, 108(5), 1035-1043. Doi: 10.1007/s00421-009-1310-4.

Goedhart, A.D., Willemsen, G., Houtveen, J.H., Boomsma, D.I. y De Geus, E.J. (2008). Comparing low frequency heart rate variability and preejection period: two sides of a different coin. Psychophysiology, 45(6), 1086-1090. Doi: 10.1111/j.1469-8986.2008.00710.x.

Hayano, J. y Yuda, E. (2019). Pitfalls of assessment of autonomic function by heart rate variability. Journal of Physiological Anthropology, 38(1), 3. Doi: 10.1186/s40101-019-0193-2.

Hibbert, A.S, Weinberg, A. y Klonsky, E.D. (2012). Field validity of heart rate variability metrics produced by QRSTool and CMetX. Psychological Assessment, 24(3), 777-782. Doi: 10.1037/a0027284.

Kim, H.G., Cheon, E.J., Bai, D.S., Lee, Y.H. y Koo, B.H. (2018). Stress and heart rate variability: A meta-analysis and review of the literature. Psychiatry Investigation, 15(3), 235-245. Doi: 10.30773/pi.2017.08.17.

Laborde, S., Mosley, L.S. y Thayer, J.F. (2017). Heart rate variability and cardiac vagal tone in psychophysiological research. Recommendations for experiment planning, data analysis, and data reporting. Frontiers in Psychology, 8, 213. Doi: 10.3389/fpsyg.2017.00213.

Lagraauw, H.M., Kuiper, J. y Bot, I. (2015). Acute and chronic psychological stress as risk factors for cardiovascular disease: Insights gained from epidemiological, clinical and experimental studies. Brain, Behavior, and Immunity, 50, 18-30. Doi: 10.1016/j.bbi.2015.08.007.

Malliani, A., Pagani, M., Lombardi, F. y Cerutti, S. (1991). Cardiovascular neural regulation explored in the frequency domain. Circulation, 84(2), 482-492. Doi: 10.1161/01.cir.84.2.482.

Montano, N., Porta, A., Cogliati, C., Constantino, G., Tobaldini, E., Casali, K.R. e Iellamo, F. (2009). Heart rate variability explored in the frequency domain: A tool to investigate the link between heart and behavior. Neuroscience and Biobehavioral Reviews, 33(2), 71-80. Doi: 10.1016/j.neubiorev.2008.07.006 .

Morera, L.P., Tempesti, T.C., Pérez, E. y Medrano, L.A. (2019). Biomarcadores en la medición del estrés: una revisión sistemática. Ansiedad y Estrés, 25(1), 49-58. Doi: 10.1016/j.anyes.2019.02.001.

Open Science Collaboration (2015). Psychology. Estimating the reproducibility of psychological science. Science, 349(6251), aac4716. Doi: 10.1126/science.aac4716.

Pallant, J. (2016). SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Open University Press/McGraw-Hill.

Pulopulos, M.M., Hidalgo, V., Puig P., S. y Salvador, A. (2018). Psychophysiological response to social stressors: relevance of sex and age. Psicothema, 30(2), 171-176. Doi: 10.7334/psicothema2017.200.

Reyes del Paso, G.A., Langewitz, W., Mulder, L.J.M., Van Roon, A. y Duschek, S. (2013). The utility of low frequency heart rate variability as an index of sympathetic cardiac tone: A review with emphasis on ranalysis of previous studies. Psychophysiology, 50(5), 477-487. Doi: 10.1111/psyp.12027.

Sloan, R.P., Korten, J.B. y Myers, M.M. (1991). Components of heart rate reactivity during mental arithmetic with and without speaking. Physiology & Behavior, 50(5), 1039-1045. Doi: 10.1016/0031-9384(91)90434-p.

Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-aho, P.O. y Karjalainen, P.A. (2014). Kubios HRV – Heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210-20. Doi: 10.1016/j.cmpb.2013.07.024.

Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996). Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation, 93(5), 1043-65.

Thoits, P.A. (2010). Stress and health: major findings and policy implications. Journal of Health and Social Behavior, 51(1), S41-S53. Doi: 10.1177/0022146510383499.

Thomas, B.L., Claassen, N., Becker, P., y Viljoen, M. (2019). Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology, 78(1), 14-26. Doi: 10.1159/000495519.

Uchino, B.N., Smith, T.W., Holt-Lunstad, J., Campo, R. y Reblin, M. (2007). Stress and illness. En J. Cacioppo, L. G. Tassinary y G. G. Berntson (Eds.): Handbook of psychophysiology (pp. 608-632). Cambridge University Press.

Vazan, R., Filcikova, D. y Mravec, B. (2017). Effect of the Stroop test performed in supine position on the heart rate variability in both genders. Autonomic Neuroscience, 208, 156-160. Doi: 10.1016/j.autneu.2017.10.009.